Home|Journals|Articles by Year Follow on Twitter

Directory for Medical Articles
 

Open Access

Review Article

EJMCM. 2016; 3(3): 162-174


Intelligent Biohybrid Systems for Functional Brain Repair

Gabriella Panuccio, Marianna Semprini, Michela Chiappalone.

Abstract
In the quest for novel neurotechnologies to defeat brain diseases, intelligent biohybrid systems have earned a privileged role among unconventional brain repair strategies. These systems are based on the functional interaction between the nervous tissue and engineered devices, the establishment of which is mediated by artificial intelligence. As novel, previously unimaginable neurotechnologies are emerging, what are the translational impact and the practical consequences carried by these tools for the clinical practice?

In this review, we describe the progression of brain repair strategies, from the early pioneering demonstration of their feasibility to their recent implementation in the experimental and clinical settings. We will show how the convergence of different disciplines across the decades has led to the emergence of innovative concepts based on intelligent biohybrid designs. We discuss the advantages and limitations of the described approaches and we conclude by proposing possible solutions to the current shortcomings of

Key words: Artificial intelligenceBrain damageFunctional brain repairNeural engineeringNeurotechnology



Similar Articles

Biovalue in Human Brain Banking: Applications and Challenges for Research in Neurodegenerative Diseases.
Vedam-Mai V
Methods in molecular biology (Clifton, N.J.). 2022; 2389(): 209-220

Advancing Our Understanding of Brain Disorders: Research Using Postmortem Brain Tissue.
Curtis MA, Vedam-Mai V
Methods in molecular biology (Clifton, N.J.). 2022; 2389(): 201-208

Emerging roles of NRBF2/PI3KC3 axis in maintaining homeostasis of brain and guts.
Wu MY, Cai CZ, Yang C, Yue Z, Chen Y, Bian ZX, Li M, Lu JH
Neural regeneration research. 2022; 17(2): 323-324

Boosting proteolytic pathways as a treatment against glycation-derived damage in the brain?
Taylor A, Bejarano E
Neural regeneration research. 2022; 17(2): 320-322

Identifying Neural Progenitor Cells in the Adult Human Brain.
Park TIH, Waldvogel HJ, Montgomery JM, Mee EW, Bergin PS, Faull RLM, Dragunow M, Curtis MA
Methods in molecular biology (Clifton, N.J.). 2022; 2389(): 125-154


Full-text options


Latest Statistics about COVID-19
• pubstat.org


Add your Article(s) to Indexes
• citeindex.org






Covid-19 Trends and Statistics
ScopeMed.com
CiteIndex.org
CancerLine
FoodsLine
PhytoMedline
Follow ScopeMed on Twitter
Author Tools
eJPort Journal Hosting
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
ScopeMed is a Database Service for Scientific Publications. Copyright ScopeMed Information Services.



ScopeMed Web Sites