Home|Journals|Articles by Year|Audio Abstracts
 

Original Article



Studies on the Optimization of Lipase Production by Rhizopus sp. ZAC3 Isolated from the Contaminated Soil of a Palm Oil Processing Shed

ZAINAB ADENIKE AYINLA, ADEDEJI NELSON ADEMAKINWA, FEMI KAYODE AGBOOLA.




Abstract
Cited by 33 Articles

This study investigated the screening, production and optimization of an extracellular lipase from a fungi isolated from the contaminated soil of a palm oil processing shed. This was with a view to obtaining a strain that can secrete lipase with biochemical properties exploitable for biotechnological applications such as bioremediation of oil contaminated sites.
Soil samples were collected from palm oil contaminated sites in Gbogan, Osun State, Nigeria (Latitude N 7°29.1481´ and Longitude E 4°20.7587´). The isolated fungal strains were screened on tributyrin agar for exogenous lipolytic activity. Molecular identification was carried out by amplifications of ITS-1, 5.8S and ITS-2 regions. The effects of incubation time, inducers, pH, temperature, carbon and nitrogen sources were varied for optimal lipase production using one factor at a time approach.
Rhizopus oryzae ZAC3 (NCBI accession No: KX035094) was identified as the highest lipase-producing strain. Maximum lipase production was observed on the fourth day, pH 5.0 and a temperature of 45 oC. Olive oil, xylose and yeast extract were the best inducer, carbon and nitrogen sources respectively for lipase production. There was a 2.02 fold increase in lipase production under these optimized conditions.
In conclusion, Rhizopus oryzae ZAC3 lipase has properties exploitable for industrial and biotechnological applications.

Key words: Lipase, Rhizopus oryzae ZAC3, thermophilic fungi, ITS region, screening, optimization






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.