Home|Journals|Articles by Year|Audio Abstracts
 

Original Article



Biomechanical Stability of Juvidur and Bone Models on Osteosyntesic Materials

Predrag Grubor, Milorad Mitkovi& 263;, Milan Grubor, Milan Mitkovi& 263;, Luigi Meccariello, and Gabriele Falzarano.




Abstract

Introduction: Artificial models can be useful at approximate and qualitative research, which should give the preliminary results. Artificial models are usually made of photo-elastic plastic e.g.. juvidur, araldite in the three-dimensional contour shape of the bone. Anatomical preparations consist of the same heterogeneous, structural materials with extremely anisotropic and unequal highly elastic characteristics, which are embedded in a complex organic structure. The aim of the study: Examine the budget voltage and deformation of: dynamic compression plate (DCP), locking compression plate (LCP), Mitkovic internal fixator (MIF), Locked intramedullary nailing (LIN) on the compressive and bending forces on juvidur and veal bone models and compared the results of these two methods (juvidur, veal bone). Material and Methods: For the experimental study were used geometrically identical, anatomically shaped models of Juvidur and veal bones diameter of 30 mm and a length of 100 mm. Static tests were performed with SHIMADZU AGS-X testing machine, where the force of pressure (compression) increased from 0 N to 500 N, and then conducted relief. Bending forces grew from 0 N to 250 N, after which came into sharp relief. Results: On models of juvidur and veal bones studies have confirmed that uniform stability at the site of the fracture MIF with a coefficient ranking KMIF=0,1971, KLIN=0,2704, KDCP=0,2727 i KLCP=0,5821. Conclusion: On models of juvidur and veal bones working with Shimadzu AGS-X testing machine is best demonstrated MIF with a coefficient of 0.1971.

Key words: osteosynthesis material, veal bone, juvidur, SHIMADZU AGS-X.






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.