Home|Journals|Articles by Year|Audio Abstracts
 

Original Article



Chitosan and β-amino butyric acid up-regulates transcripts of resistance gene analog RGPM213 in pearl millet to infection by downy mildew pathogen

P. Ranjini, Melvin Prasad, J. Samanth Kumar, Shailasree Sekhar, Devaraju Kesagodu, H. Shekar Shetty, K. Ramachandra Kini.




Abstract
Cited by 2 Articles

Plants are hosts to a diverse group of pathogens belonging to different kingdoms of life. In absence of active immune system, plants have evolved several layers of defense to combat individual pathogen strain and evolving pathogen populations. Management of plant pathogen infections necessitates the use of multiple resistance (R) genes, which requires efficient and accurate practices for identification, isolation and characterization of R genes. This knowledge helps to probe R gene(s) in a host plant and sort their functional redundancy and specificity. Pearl millet [Pennisetum glaucum (L.) R. Br.] is nutritive, summer-annual forage crop, drought tolerant cereal, staple food crop of the semi-arid tropics but is highly susceptible to the downy mildew disease caused by oomycetous Sclerospora graminicola (Sacc) schroet. Earlier studies have identified several resistance gene analogues (RGAs) in pearl millet which may be involved in resistance against downy mildew. Of these, a clone RGPM213 was shown to encode resistant protein having serine threonine kinase domain and its transcript was upregulated following Sclerospora graminicola infection and β-amino butyric acid an inducer treatment. Here we have shown the accumulation of transcripts of RGPM 213 in pearl millet during treatment with Chitosan, a chitin derivative, a known inducer of plant defense which is completely safe, characterized by bioactivity and biocompatibility.

Key words: Key Words: Resistance gene analog (RGA), Pearl millet, RT-PCR, Transcript, Plant defense






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.