Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

JJEE. 2022; 8(4): 355-364


A Numerical Simulation of Transport Layer Thickness Effect in Tin-Based Perovskite Solar Cell

Asrul Izam Azmi, Muhammad Yusof Mohd Noor, Mohd Halim Irwan Ibrahim, Fauzan Ahmad, Mohd Haniff Ibrahim.




Abstract

This paper investigates the performance of a planar n-i-p perovskite solar cells (PSC) with lead-free perovskite absorber for three different metal oxides serving as the electron transport layer (ETL). A tin (Sn) based PSCs - with i) zinc oxide (ZnO), ii) titanium oxide (TiO2) and iii) tin oxide (SnO2) as the ETL, and spiro-MeOTAD as the hole transport layer (HTL) - are modeled and simulated using a 1-dimensional numerical software (SCAPS 1-D). Thicknesses of both the methylammonium tin iodide (CH3NH3SnI3) absorber and the ETL are varied for the purpose of achieving the optimum power conversion efficiency (PCE). For all metal oxide candidates, thickness of lead-free perovskite absorber layer is varied from 400 nm to 1500 nm. The obtained results show that the optimum recorded PCE is achieved at 900 nm. Moreover, the highest PCE value of 8.10% is observed for 80 nm thickness of SnO2 compared to 8.05% for ZnO and 7.99% for TiO2. Additionally, the results unveil that for a constant HTL thickness of 80 nm and ETL thickness increment up to 300 nm, the PCE is slightly reduced between 0.12% and 0.99% for all ETLs. We believe that this is the first simulation effort that evaluates the effect of transport layer thickness on the performance of lead-free PSC, hoping that the findings will be useful for the research community, particularly for those working in the field of solar cells fabrication and development.

Key words: Perovskite solar cell; SCAPS 1-D; Hole transport layer; Electron transport layer; Power conversion efficiency.






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.