Home|Journals|Articles by Year|Audio Abstracts

Research Article

. 2016; 4(2): 192-222

Effects of Particulates on Contact Angles and Adhesion of a Droplet: A Critical Review

Youhua Jiang, Wei Xu, Chang-Hwan Choi.


Adhesion of droplets to solid surfaces plays an important role in various applications, such as oil recovery, detergency, coatings, self-cleaning surfaces, anti-icing surfaces, pesticide deposition, and self-assembly of nanoparticles. Behaviors of a droplet on a solid surface, including static contact angles before depinning, contact angle hysteresis during depinning, and droplet boundary motion after depinning, are affected by particulates contained in the droplet. The mechanisms of particulates affecting the adhesion of a droplet to a solid surface are discussed in this review. The static contact angles are affected by the adsorption of particulates on solid-liquid, liquid-gas, and solid-gas interfaces. The contact angle hysteresis is determined by the increased roughness of the solid surface, the viscosity of liquid along the droplet boundary, and the structural disjoining pressure induced by the ordering of particulates. The droplet boundary motion behaviors, such as contact line moving velocity and stick-slip behavior, are also affected by the droplet boundary pinning due to the presence of particulates. The local concentration of particulates along the droplet boundary has an essential impact on the adhesion behavior of the droplet, which is determined by flows within the droplet and interactions amongst particulates, between particulates and the substrate, and between particulates and the liquid-gas interface. At last, several research directions for further understanding of the effects of particulates on droplet adhesion are proposed.

Key words: Particle-laden droplets, adhesion, contact angle, contact angle hysteresis, droplet boundary pinning, stick-slip behavior

Full-text options

Share this Article

Online Article Submission
• ejmanager.com
• ojshosting.net

Do you want to use OJS for your journal ?
work with an experienced partner

Review(er)s Central
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.