Home|Journals|Articles by Year Follow on Twitter

Directory for Medical Articles

Open Access

Original Article

Structure Types of Kidney Stones and Their Susceptibility to Shock Wave Fragmentation

Sergiy Kolupayev, Vladimir Lesovoy, Elena Bereznyak, Nina Andonieva, Dmytro Shchukin.

Background: The modern approach in the treatment of urolithiasis involves the use of non-invasive and minimally invasive techniques based on the stone fragmentation, among which shock wave lithotripsy (SWL) is considered as the first-line treatment for kidney stones < 2 cm and proximal ureter stones. Objective: To study the microstructure and mineral composition of kidney stones and to evaluate their influence on the stones’ susceptibility to fragmentation by shock waves. Methods: The microstructure and mineral composition of kidney stone samples obtained from shock wave lithotripsy in 87 patients were studied using crystal optical analysis and infrared spectroscopy. The volume fraction of amorphous and crystalline phases of the stone composition, the quantitative and qualitative composition of mineral components were assessed. The fragmentation features of stones with different microstructure were retrospectively analyzed based on the total number of shock waves required for complete stone fragmentation. Results: Three kidney stone structure types were identified: amorphous-crystalline structure stones predominantly including the amorphous phase (type A); amorphous-crystalline structure stones predominantly including the crystalline phase (type B); fully crystalline structure stones (type C). Significant positive correlation between the total number of shock waves required for complete stone fragmentation and the volume fraction of crystalline phase was found. Conclusion: The structure type of kidney stones is determined by the volume ratio between the amorphous and crystalline phases of their composition. The amorphous-crystalline structure stones with the predominant content of the amorphous phase are more sensitive to shock-wave exposure. The increase in the volume fraction of crystalline phase in the stone structure reduces the stone’s susceptibility to fragmentation by shock waves.

Key words: amorphous phase, crystal optical analysis, crystalline phase, kidney stone, microstructure, shock wave lithotripsy.

Similar Articles

A study of vegetable oil modified QCM sensor to detect β-pinene in Indian cardamom.
Debabhuti N, Mukherjee S, Neogi S, Sharma P, Sk UH, Maiti S, Sarkar MP, Tudu B, Bhattacharyya N, Bandyopadhyay R
Talanta. 2022; 236(): 122837

Dendritic spine density changes and homeostatic synaptic scaling: a meta-analysis of animal studies.
Moulin TC, Rayêe D, Schiöth HB
Neural regeneration research. 2022; 17(1): 20-24

Gas phase ion-molecule reactions of nitroaromatic explosive compounds studied by hollow cathode discharge ionization-mass spectrometry.
Hong H, Habib A, Bi L, Wen L
Talanta. 2022; 236(): 122834

Chemometric analysis of the global pattern of volatile organic compounds in the exhaled breath of patients with COVID-19, post-COVID and healthy subjects. Proof of concept for post-COVID assessment.
Zamora-Mendoza BN, Díaz de León-Martínez L, Rodríguez-Aguilar M, Mizaikoff B, Flores-Ramírez R
Talanta. 2022; 236(): 122832

Controllable synthesis of uniform large-sized spherical covalent organic frameworks for facile sample pretreatment and as naked-eye indicator.
Li W, Wang R, Jiang HX, Chen Y, Tang AN, Kong DM
Talanta. 2022; 236(): 122829

Full-text options

Latest Statistics about COVID-19
• pubstat.org

Add your Article(s) to Indexes
• citeindex.org

Covid-19 Trends and Statistics
Follow ScopeMed on Twitter
Author Tools
eJPort Journal Hosting
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
ScopeMed is a Database Service for Scientific Publications. Copyright © ScopeMed® Information Services.

ScopeMed Web Sites