Original Article |
| |
Structure Types of Kidney Stones and Their Susceptibility to Shock Wave FragmentationSergiy Kolupayev, Vladimir Lesovoy, Elena Bereznyak, Nina Andonieva, Dmytro Shchukin. Abstract | | | | Background: The modern approach in the treatment of urolithiasis involves the use of non-invasive and minimally invasive techniques based on the stone fragmentation, among which shock wave lithotripsy (SWL) is considered as the first-line treatment for kidney stones < 2 cm and proximal ureter stones. Objective: To study the microstructure and mineral composition of kidney stones and to evaluate their influence on the stones susceptibility to fragmentation by shock waves. Methods: The microstructure and mineral composition of kidney stone samples obtained from shock wave lithotripsy in 87 patients were studied using crystal optical analysis and infrared spectroscopy. The volume fraction of amorphous and crystalline phases of the stone composition, the quantitative and qualitative composition of mineral components were assessed. The fragmentation features of stones with different microstructure were retrospectively analyzed based on the total number of shock waves required for complete stone fragmentation. Results: Three kidney stone structure types were identified: amorphous-crystalline structure stones predominantly including the amorphous phase (type A); amorphous-crystalline structure stones predominantly including the crystalline phase (type B); fully crystalline structure stones (type C). Significant positive correlation between the total number of shock waves required for complete stone fragmentation and the volume fraction of crystalline phase was found. Conclusion: The structure type of kidney stones is determined by the volume ratio between the amorphous and crystalline phases of their composition. The amorphous-crystalline structure stones with the predominant content of the amorphous phase are more sensitive to shock-wave exposure. The increase in the volume fraction of crystalline phase in the stone structure reduces the stones susceptibility to fragmentation by shock waves.
Key words: amorphous phase, crystal optical analysis, crystalline phase, kidney stone, microstructure, shock wave lithotripsy.
|
|
|
|