Home|Journals|Articles by Year|Audio Abstracts RSS - TOC
 


JJCIT. 2021; 7(2): 192-205


RECOGNITION OF ARABIC HANDWRITTEN CHARACTERS USING RESIDUAL NEURAL NETWORKS

Ahmad T. Al- Taani, Sadeem T. Ahmad.




Abstract

This study proposes the use of Residual Neural Networks (ResNets) to recognise Arabic offline isolated handwritten characters including Arabic digits. ResNets is a deep learning approach which showed effectiveness in many applications more than conventional machine learning approaches. The proposed approach consists of three main phases: pre-processing phase, training the ResNet on the training set, and testing the trained ResNet on the datasets. The evaluation of the proposed approach is performed on three available datasets: MADBase, AIA9K, and AHCD. The proposed approach achieved accuracies of 99.8%, 99.05% and 99.55% on these datasets, respectively. It also achieved a validation accuracy of 98.9% on the constructed dataset based on the three datasets.

Key words: Residual Network, Deep Learning, Deep Neural Networks, Arabic Handwritten, Characters Recognition.






Full-text options


Share this Article



Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Review(er)s Central
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.