Home|Journals|Articles by Year|Audio Abstracts
 

Research Article

ECB. 2019; 8(7): 231-234


AN INTERACTION MODE OF N-(DECYLOXYPHENYL)-N‘-(4- CHLOROBENZOYL)THIOUREA DOPANT IN CARBOXYMETHYL CELLULOSE (CMC) FOR SOLID POLYMER ELECTROLYTE

Wan M. Khairul, Saidatul Radhiah Ghazali, M. I. N. Isa, Adibah Izzati Daud, Rafizah Rahamathullah.




Abstract

Alkoxy substituted arylthiourea derivatives provide excellent electronic properties due to the presence of rigid π-systems within their molecular framework. This study introduces a new thiourea derivative, N-(decyloxyphenyl)-N‘-(4-chlorobenzoyl)thiourea (1A), belongs to the compounds with general formula A-ArC(O)NHC(S)NHAr-D (A is an aryl group containing chloro (-Cl) substituent, in which acts as electron acceptor, while D represented as –OCnH2n+1, the alkoxy chain tail acts as electron donor). Due to its characteristic of D-π-A system, alkoxy thiourea derivatives are applied as a dopant in Carboxymethyl Cellulose (CMC) host material to form a conductive biopolymer solid polymer electrolyte (SPE) film. The formation of a biopolymer-thiourea complex (1A-CMC) has been analyzed through Fourier Transform Infrared (FTIR) spectroscopy and X-ray diffraction (XRD) to determine the interaction between CMC and thiourea derivative in the form of film as well as Electrical Impedance Spectroscopy (EIS) for their ionic conductivity behavior. The highest conductivity at ambient temperature (303K) exhibits 1.44 x 10-7 S cm-1 for CMC-thiourea complexation featuring chloro-substitution (1A). Indeed, biopolymer electrolyte materials featuring thiourea derivative as a dopant has great potential to be developed as an electrical conductor. Due to these findings, these so-called molecular wires candidate has opened wide possibilities to be applied in many microelectronic devices in the near
future.

Key words: thiourea, carboxymethyl cellulose, conductive thin film






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.