Home|Journals|Articles by Year|Audio Abstracts
 

Original Article



Structure-based drug designing for N-methyl-D-aspartate receptor: Link between neurodegenerative disease and glioblastoma

Nithin Sadeesh, Camil Rex M, Lokesh Ravi.




Abstract
Cited by 0 Articles

Alzheimer’s disease (AD) is the most common neurodegenerative disease followed by various other disorders such as Parkinson’s disease, amyloid lateral sclerosis, Huntington’s, and glioblastoma. The target that has been a key focus in this study is N-methyl-D-aspartate (NMDA) receptor that is responsible for the transmission, integration, and plasticity of excitatory signals needed for the proper functioning of the central nervous system. NMDA is also responsible for the Ca2+ influx. Any damage to the NMDA receptor will lead to neuronal cell death which, in turn, leads to AD. Damage to the receptor also affects Ca2+ influx by developing a lead molecule that can partially bind to the receptor and when it is damaged can prevent neural death. An alkaloid compound called moupinamide (N-trans-feruloyltyramine) which was determined as a lead molecule was further optimized utilizing various in silico methods. Using moupinamide as the basic framework, initial and secondary drug designing is done and then it is followed by docking studies, absorption, distribution, metabolism, and excretion analysis, and molecular simulations. In this study, it was observed that optimized lead molecule high modulus polyethylene could be a potential lead molecule as it showed a great potential.

Key words: Neurodegenerative diseases, NMDA receptor, Moupinamide, HMPE.






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.