Home|Journals|Articles by Year|Audio Abstracts
 

Original Article



Molecular optimization, docking, and dynamic simulation profiling of selective aromatic phytochemical ligands in blocking the SARS-CoV-2 S protein attachment to ACE2 receptor: an in silico approach of targeted drug designing

Dipta Dey, Parag Kumar Paul, Salauddin Al Azad, Mohammad Faysal Al Mazid, Arman Mahmud Khan, Md. Arman Sharif, Md. Hafijur Rahman.




Abstract

Objectives: The comprehensive in silico study aims to figure out the most effective aromatic phytochemical ligands among a number from a library, considering their pharmacokinetic effi¬cacies in blocking “angiotensin-converting enzyme 2 (ACE2) receptor–severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S protein” complex formation as part of a target-specific drug designing.
Materials and Methods: A library of 57 aromatic pharmacophore phytochemical ligands was prepared from where the top five ligands depending on Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) and quantitative structure-activity relationship (QSAR)-based pharmacokinetic properties were considered. The selected ligands were optimized for commenc¬ing molecular docking and dynamic simulation as a complex with the ACE2 receptor to compare their blocking efficacy with the control drug. The ligand–receptor complexes’ accuracy in prevent¬ing the Spike (S) protein of SARS-CoV-2 penetration inside the host cells has been analyzed through hydrogen–hydrophobic bond interactions, principal component analysis (PCA), root mean square deviation (RMSD), root mean square fluctuation (RMSF), and B-Factor. Advanced in silico program¬ming language and bioanalytical software were used for high throughput and authentic results.
Results: ADMET and QSAR revealed Rhamnetin, Lactupicrin, Rhinacanthin D, Flemiflavanone D, and Exiguaflavanone A as the ligands of our interest to be compared with the control Cassiarin D. According to the molecular docking binding affinity to block ACE2 receptor, the efficiency mount¬ings were Rhinacanthin D > Flemiflavanone D > Lactupicrin > Exiguaflavanone A > Rhamnetin. The binding affinity of the Cassiarin D–ACE2 complex was (−10.2 KJ/mol) found inferior to the Rhinacanthin D–ACE2 complex (−10.8 KJ/mol), referring to Rhinacanthin D as a more stable candi¬date to use as drugs. The RMSD values of protein–ligand complexes evaluated according to their structural conformation and stable binding pose ranged between 0.1~2.1 Å. The B-factor showed that very few loops were present in the protein structure. The RMSF peak fluctuation regions ranged 5–250, predicting efficient ligand–receptor interactions.
Conclusion: The experiment sequentially measures all the parameters required in referring to any pharmacophore as a drug, considering which all aromatic components analyzed in the study can strongly be predicted as target-specific medication against the novel coronavirus 2019 infection.

Key words: Antiviral efficacy; molecular docking; dynamic simulation; principal component analysis; targeted drug designing






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.