Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

J App Pharm Sci. 2017; 7(1): 199-203


EVALUATION OF NOVEL 4-THIAZOLIDINONE-BASED DERIVATIVES AS POSSIBLE CYTOPROTECTIVE AGENTS AGAINST STRESS MODEL IN RATS

Iryna Ilkiv, Roman Lesyk, Olexandr Sklyarov.




Abstract

Multiple factors, such as increased intestinal barrier permeability, upregulation of iNOS/NO expression and decreased H2S synthesis are involved in the pathogenesis of inflammation. The purpose of this investigation was to explore the role of 4-thiazolidinone-based derivatives as a novel donors of H2S in promoting the resolution of inflammation in small intestine. In the present study, we investigated the effect of novel 4-thiazolidinone derivatives (compounds Les-5054 and Les-5055) on various intestinal events occurring in association with stress-induced gastrointestinal damage. It was observed an intensification of lipid peroxidation, myeloperoxidase activity, accompanied by increase of iNOS activity, NO production and decrease of H2S content in rats with water-immersion stress group. In animals treated with compounds Les-5054 and Les-5055 the reduction of the activity of iNOS, myeloperoxidase, intensity of lipid peroxidation and increased generation of H2S were revealed. 4-thiazolidinone-based derivatives increased small intestine mucosal activity of anti-oxidative enzymes SOD and catalase in rats subjected to stress. The compound Les-5054 showed significant efficacious effect and antioxidant properties compared to compound Les-5055.

Key words: hydrogen sulfide, small intestine, water-immersion stress, 4-thiazolidinones.






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.