Home|Journals|Articles by Year Follow on Twitter

Directory for Medical Articles
 

Open Access

Original Article



Production of islet-like insulin-producing cell clusters in vitro from adipose-derived stem cells

Loan Thi-Tung Dang, Anh Nguyen-Tu Bui, Vuong Minh Pham, Ngoc Kim Phan, Phuc Van Pham.

Abstract
Diabetes mellitus is a high incidence disease that has increased rapidly in recent years. Many new therapies are being studied and developed in order to find an effective treatment. An ideal candidate is stem cell therapy. In this study, we investigated the differentiation of adipose derived stem cells (ADSCs) into pseudo-islets in defined medium in vitro, to produce large quantities of insulin-producing cells (IPCs) for transplantation. ADSCs isolated from adipose tissue were induced to differentiate into islet-like insulin-producing cell clusters in vitro by inducing medium DMEM/F12 containing nicotinamide, N2, B27, bFGF, and insulin-transferrin-selenite (ITS). Differentiated cells were analyzed for properties of IPCs, including storage of Zn2+ by dithizone staining, insulin production by ELISA and immunochemistry, and beta cell-related gene expression by reverse transcriptase PCR. The results showed that after 2 weeks of differentiation, the ADSCs aggregated into cell clusters, and after 4 weeks they formed islets, 50–400 micrometers in diameter. These islet cells exhibited characteristics of pancreatic beta cells as they were positive for dithizone staining, expressed insulin in vitro and C-peptide in the cytoplasm, and expressed pancreatic beta cell-specific genes, including Pdx-1, NeuroD, and Ngn3. These results demonstrate that ADSCs can be used to produce a large number of functional islets for research as well as application.

Key words: Adipose derived stem cells; Beta cells; Diabetes mellitus; In vitro differentiation; Nicotinamid



Similar Articles

The promise of neuroprotection by dietary restriction in glaucoma.
Russo R, Nucci C, Adornetto A
Neural regeneration research. 2022; 17(1): 45-47

Growth differentiation factor 5: a neurotrophic factor with neuroprotective potential in Parkinson's disease.
Goulding SR, Anantha J, Collins LM, Sullivan AM, O'Keeffe GW
Neural regeneration research. 2022; 17(1): 38-44

Presenilin mutations and their impact on neuronal differentiation in Alzheimer's disease.
Hernandez-Sapiens MA, Reza-Zaldívar EE, Márquez-Aguirre AL, Gómez-Pinedo U, Matias-Guiu J, Cevallos RR, Mateos-Díaz JC, Sánchez-González VJ, Canales-Aguirre AA
Neural regeneration research. 2022; 17(1): 31-37

Boosting proteolytic pathways as a treatment against glycation-derived damage in the brain?
Taylor A, Bejarano E
Neural regeneration research. 2022; 17(2): 320-322

Hyperglycemia in acute ischemic stroke: physiopathological and therapeutic complexity.
Ferrari F, Moretti A, Villa RF
Neural regeneration research. 2022; 17(2): 292-299


Full-text options


Add your Article(s) to Indexes
• citeindex.org






ScopeMed.com
CiteIndex.org
CancerLine
FoodsLine
PhytoMedline
Follow ScopeMed on Twitter
Author Tools
eJPort Journal Hosting
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
ScopeMed is a Database Service for Scientific Publications. Copyright © ScopeMed® Information Services.