Home|Journals|Articles by Year Follow on Twitter

Directory for Medical Articles

Open Access

Original Article

A comparison of umbilical cord blood-derived endothelial progenitor and mononuclear cell transplantation for the treatment of acute hindlimb ischemia

Phuc Van Pham, Anh Nguyen-Tu Bui, Ngoc-Le Trinh, Lan Thi Phi, Ngoc Kim Phan, and Ngoc Bich Vu.

Acute lower limb ischemia is a common peripheral artery disease whose treatment presents many difficulties. Stem cell transplantation is considered a novel and promising method of treating this disease. Umbilical cord blood (UCB) is rich in stem cells, including hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs). However, historically, banked umbilical cord blood has been used mainly to treat blood-related diseases. Therefore, this study compared the efficacy of umbilical cord bloodderived mononuclear cells (UCB-MNCs) with EPC transplantation for the treatment of acute hindlimb ischemia (ALI) in mouse models. MNCs were isolated from UCB by Ficoll gradient centrifugation, after which the EPCs were sorted based on CD34+ and CD133+ markers and cultured according to a previously published protocol. To induce ALI, mice were immuno-suppressed using busulfan (BU) and cyclophosphamide (CY), after which the femoral arteries were burned. Induction of ALI in the immune suppressed mice was confirmed by the grade of tissue damage, pedal frequency in water, tissue edema, changes in histology, total white blood cell count, and white blood cell composition. Model mice were injected with a dose of MNCs or EPCs and un-treated control mice were injected with phosphate buffered saline. The efficiency of treatment was evaluated by comparing the grade of tissue damage between the three groups of mice. Mice aged 6–12 months were suitable for ALI, with 100% of mice exhibiting ischemia from grade I 10%, grade III 50%, grade IV 40%. For all ALI mice, a gradual increase in pedal frequency in water, increased tissue edema, necrosis of muscle tissue, and loss of hindlimb function were observed after 20 days. Transplanted MNCs and EPCs significantly improved hindlimb ischemia compared with control treatment. Moreover, EPC transplantation significantly improved hindlimb ischemia compared with MNC transplantation. Following EPC and MNC transplantation, 44.44% and 33.33% of the mice recovered fully (grade 0), respectively. Specifically, all recovered mice exhibited hindlimb activities similar to those of normal mice. Transplantation of UCB-derived MNCs and EPCs are promising therapies for hindlimb ischemia.

Key words: Hindlimb ischemia Umbilical cord blood-derived stem cells Mononuclear cells Endothelial progenitor cells Neovascularization

Similar Articles

The promise of neuroprotection by dietary restriction in glaucoma.
Russo R, Nucci C, Adornetto A
Neural regeneration research. 2022; 17(1): 45-47

Presenilin mutations and their impact on neuronal differentiation in Alzheimer's disease.
Hernandez-Sapiens MA, Reza-Zaldívar EE, Márquez-Aguirre AL, Gómez-Pinedo U, Matias-Guiu J, Cevallos RR, Mateos-Díaz JC, Sánchez-González VJ, Canales-Aguirre AA
Neural regeneration research. 2022; 17(1): 31-37

Boosting proteolytic pathways as a treatment against glycation-derived damage in the brain?
Taylor A, Bejarano E
Neural regeneration research. 2022; 17(2): 320-322

Delving into the recent advancements of spinal cord injury treatment: a review of recent progress.
Flack JA, Sharma KD, Xie JY
Neural regeneration research. 2022; 17(2): 283-291

Transcranial magnetic stimulation in animal models of neurodegeneration.
Uzair M, Abualait T, Arshad M, Yoo WK, Mir A, Bunyan RF, Bashir S
Neural regeneration research. 2022; 17(2): 251-265

Full-text options

Add your Article(s) to Indexes
• citeindex.org

Follow ScopeMed on Twitter
Author Tools
eJPort Journal Hosting
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
ScopeMed is a Database Service for Scientific Publications. Copyright © ScopeMed® Information Services.