Home|Journals|Articles by Year

Directory for Medical Articles
 

Original Article



Intelligent Data Analysis: the Best Approach for Chronic Heart Failure (CHF) Follow Up Management

Niloofar Mohammadzadeh, Reza Safdari, Alireza Baraani, Farshid Mohammadzadeh.


Abstract

Objective: Intelligent data analysis has ability to prepare and present complex relations between symptoms and diseases, medical and treatment consequences and definitely has significant role in improving follow-up management of chronic heart failure (CHF) patients, increasing speed ​​and accuracy in diagnosis and treatments; reducing costs, designing and implementation of clinical guidelines. The aim: The aim of this article is to describe intelligent data analysis methods in order to improve patient monitoring in follow and treatment of chronic heart failure patients as the best approach for CHF follow up management. Methods: Minimum data set (MDS) requirements for monitoring and follow up of CHF patient designed in checklist with six main parts. All CHF patients that discharged in 2013 from Tehran heart center have been selected. The MDS for monitoring CHF patient status were collected during 5 months in three different times of follow up. Gathered data was imported in RAPIDMINER 5 software. Results: Modeling was based on decision trees methods such as C4.5, CHAID, ID3 and k-Nearest Neighbors algorithm (K-NN) with k=1. Final analysis was based on voting method. Decision trees and K-NN evaluate according to Cross-Validation. Conclusion: Creating and using standard terminologies and databases consistent with these terminologies help to meet the challenges related to data collection from various places and data application in intelligent data analysis. It should be noted that intelligent analysis of health data and intelligent system can never replace cardiologists. It can only act as a helpful tool for the cardiologist’s decisions making.

Key words: Data Analysis, Heart Failure, Follow Up Study.






Full-text options


Share this Article



Online Article Submission
• ejmanager.com
• ojshosting.net







Do you want to use OJS for your journal ?
work with an experienced partner
www.OJSHosting.net

eJManager.com
Review(er)s Central
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.