Home|Journals|Articles by Year|Audio Abstracts
 

Original Article



Generation of a mouse model of Primary Hyperoxaluria Type 1 via CRISPR/Cas9 mediated gene editing

Kimberly A Coughlan,Rajanikanth J Maganti,Andrea Frassetto,Christine M DeAntonis,meredith Wolfrom,Anne-Renee Graham,Shawn M Hillier,Steven Fortucci,Hoor Al Jandal,Sue-Jean Hong,Paloma H Giangrande,Paolo GV Martini.




Abstract

Background: Primary Hyperoxaluria Type 1 (PH1) is an inborn error of metabolism caused by mutations in the AGXT gene, which encodes for the hepatocyte-specific enzyme alanine: glyoxylate aminotransferase (AGT). AGT catalyzes the conversion of glyoxylate to glycine in the peroxisome and prevents the build-up of oxalate which occurs in PH1. This causes nephrocalcinosis, systemic oxalosis, and end-stage renal disease. Liver transplant is currently the only curative treatment available. Although a mouse model has previously been generated, the severity of the reported disease phenotype varies, and a better understanding of the genotype-phenotype relationship in both the mouse model and human disease is needed.
Methods: We developed an Agxt-/- mouse model using CRISPR/Cas9-mediated gene editing. We performed a natural history study and ethylene glycol (EG) challenge to evaluate the phenotype of this mouse.
Results: Agxt-/- mice had elevated plasma glycolate, urine glycolate, and urine oxalate levels compared to Agxt+/+ mice. A small subset of Agxt-/- mice developed minimal nephrocalcinosis (1/8 at 12 weeks, 1/8 at 26 weeks, 0/8 at 39 weeks, and 3/7 at 52 weeks of age). When challenged with 0.7% or 1.2% EG in drinking water for 3 weeks, 2/10 Agxt-/- mice developed nephrocalcinosis. Agxt2mRNA and protein expression were unchanged between Agxt-/- and Agxt+/+ mice. Hydroxy acid oxidase 1(Hao1) messenger ribonucleic acid (mRNA) levels were unchanged, but the corresponding glycolate oxidase protein was increased in Agxt-/- mice.
Conclusion: We have created an Agxt-/- mouse model which resembles much of the clinical phenotype of PH1 patients and will be a useful tool in developing novel therapies for this devastating disease.

Key words: Primary Hyperoxaluria Type 1, CRISPR/Cas9, nephrocalcinosis, inborn error of metabolism






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.