Home|Journals|Articles by Year|Audio Abstracts

Original Article

J App Pharm Sci. 2024; 14(2): 109-117

Development of a multivariable prediction model to assess potential drug-drug interactions in chronic kidney disease patients

Soumyajeet Paul, Ananya Rudra, Suparna Bhattacharjee, Girish Thunga, Ravindra Prabhu Attur, Vijayanarayana Kunhikatta.


Potential drug-drug interactions (pDDIs) are highly prevalent in chronic kidney disease (CKD) patients, owing to the existence of various comorbidities and the large number of drugs used to treat them. This study aimed to evaluate the number and types of pDDIs observed in the study population and to develop a prediction model based on various risk factors. It was conducted retrospectively at a tertiary care teaching hospital and included 392 CKD patients. Relevant patient demographics and clinical details were collected and documented in case record forms. Using the Micromedex® Drug-Reax® System, the acquired data were screened to identify and classify pDDIs, and Poisson regression was used to identify independent risk factors associated with the number of pDDIs. Data entry and analysis were done using IBM Statistical Package for the Social Sciences software v20.0. A total of 2,054 interacting drug pairs were found and male gender, comorbid conditions like ischemic heart disease, hypertension, diabetes mellitus, and congestive heart failure, a higher number of therapeutic subgroups, and drugs per prescription were identified as independent risk factors associated with an increase in the number of pDDIs. The presence of liver disease was the only factor that reduced the number of pDDIs. Our study identified the significant risk factors for pDDIs in CKD patients and developed a prediction model. This can play a significant role in the early detection of pDDIs using prior information about the patient characteristics and attributes of various administered drugs.

Key words: chronic kidney disease · potential drug-drug interactions · prediction model · risk factors

Full-text options

Share this Article

Online Article Submission
• ejmanager.com

ejPort - eJManager.com
Refer & Earn
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.