Home|Journals|Articles by Year|Audio Abstracts
 

Original Article



Effect of caffeine-loaded silver nanoparticles on minerals concentration and antibacterial activity in rats

Mohammed Rasheed, Maysoon M N M Saleem, Thorria R. Marzoog, Malaa M. Taki, Dikra Bouras, Israa A. Hashim, Mustafa Nuhad Al-Darraji, Raad Rasheed, Mohammed Abdulhadi Sarhan.




Abstract

Background: Caffeine boosts metabolism and the neurological system. When extreme weakness or sleepiness occurs, it is used recreationally and medicinally to reduce physical and mental fatigue. Caffeine initially stimulates the central nervous system, increasing intellect, speed, accuracy, focus, and coordination. Objective: To evaluate how caffeine nanoparticles affect potassium, calcium, zinc, and magnesium levels, in addition, the anti-bacterial activity of the samples has been employed. Methods: Eighteen male albino rats were divided into three separate groups. The first group (G1) was made up of six animals that served as a control group. The second group (G2) was made up of six animals that were given caffeine, and the third group (G3) was made up of six animals that were given silver nanoparticles from a caffeine solution. The particle size and structural morphology of Caffeine and silver nanoparticles were analyzed using Brookhaven Instruments Corp., XRD and SEM respectively. Results: The structural results showed after addition, caffeine was tube-shaped and silver was spherical granular. Caffeine has more silver nanoparticles than caffeine solution. Caffeine solution affects potassium, calcium, zinc, and magnesium levels. Additionally, the solution has antibacterial activity against the following bacteria: Staphylococcus aureus (Gram +ve), E. coli (Gram –ve), and Pseudomonas aeruginosa (Gram-ve), but it has no effect against yeast (Candida albicans). Conclusions: To determine the biological effects of caffeine-synthesized Ag NPs on zinc, magnesium, calcium, and potassium levels in male albino mice's serum, this is antibacterial against staphylococcus.

Key words: Caffeine; Ag (NPLs); antibacterial activity; metal concentration, nanotechnology






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.