Home|Journals|Articles by Year|Audio Abstracts
 

Original Article



Aspergillus niger grows faster than Escherichia coli in eosin methylene blue media and deter their growth by reducing the pH of the media

Md. Imran Hossain, Md. Sarafat Ali.




Abstract

Fungi is a kingdom that includes multicellular eukaryotic organisms such as yeast and mold; these organisms are heterotrophs (cannot make their own food) but have significant roles in nutrient cycling. To obtain nutrients from organic material, they use their hyphae, which elongate and branch off swiftly; using the mycelium quickly, they increase their size. Currently, a few media are suitable for fungal growth, such as sabouraud dextrose, malt extract and brain heart infusion medium. Bacterial eosin methylene blue (EMB media) is well-suited to fungi, which acts as selective media to differentiate Gram-negative bacteria. EMB, known as "Levine's formulation”, is a selective and differential medium for Gram-negative bacteria. In EMB media, fungi even grow faster than Gram-negative bacteria. In addition to this faster growth of fungi, it deters the growth of Gram-negative bacteria by reducing the pH. The majority of the time, fungi require specific conditions to flourish. In this study, we observed fungal growth, especially mold (Aspergillus niger), in EMB media and its retardation activity of Gram-negative bacterial growth. For this new finding assurance, we performed the bacterial and fungal identification test further along with repeating the three times of the whole experiment, and we found the same result. The fungal species was A. niger, and the bacterial species was Escherichia coli.

Key words: Fungi; EMB media; Gram-negative bacteria; Retardation; Growth






Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Refer & Earn
JournalList
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.