Home|Journals|Articles by Year|Audio Abstracts

Original Article

pnr. 2018; 9(1): 27-32

Absence of antibacterial, anti-candida, and anti-dengue activities of a surfactin isolated from Bacillus subtilis

William Gustavo Lima, Adriano Guimarães Parreira, Lídia Anitta Alves Nascimento, Camyla Alves Leonel, Jéssica Tauany Andrade, Juliana Maria Campos Palumbo, Adriana Cristina Soares, Paulo Afonso Granjeiro, Jaqueline Maria Siqueira Ferreira.


Background: Biosurfactants are biological compounds that possess many pharmacological proprieties. Among them, surfactin is one of the most active against pathogens of medical interest, such as fungi, bacteria, and enveloped viruses. Objectives: In this study, we aim to evaluate the antibacterial anti-Candida, and anti-dengue potential of a surfactin biosynthesized by Bacillus subtilis ATCC 6633. In addition, the fractional inhibitory concentration (FIC) was calculated to determine the behavior of this biosurfactant in association with antibacterial and antifungal drugs of clinical use. Materials and Methods: B. subtilis ATCC 6633 culture was maintained on nutrient agar plates, and biosurfactant production was carried out in mineral salt medium with 2% glucose. The isolated and purified surfactin was used for determination of antibacterial and antifungal effects by the broth microdilution method. A checkerboard assay was performed to determine the potential synergic effect of surfactin with gentamicin, penicillin, and nystatin. Finally, the activity against Dengue virus (DENV) was evaluated through quantification of cell viability after viral infection. Results: Although it had low cytotoxicity (CC50 >400 μg/mL), surfactin was inactive against Gram-negative and Gram-positive bacteria, Candida species, and DENV at the highest concentration tested (500 μg/mL). According to FIC values, none of the antimicrobials tested showed a synergistic association with surfactin. Conclusions: Surfactin produced by B. subtilis ATCC 6633 is not a promising antimicrobial agent, and its combination with clinically available antibiotics does not lead to a synergic effect.

Key words: Antimicrobial activity, broth microdilution assay, cellular viability, surfactin, synergic effect

Full-text options

Share this Article

Online Article Submission
• ejmanager.com
• ojshosting.net

Do you want to use OJS for your journal ?
work with an experienced partner

Review(er)s Central
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.