Home|Journals|Articles by Year|Audio Abstracts

Review Article

Thematic Clusters of Artificial Intelligence in Lung Cancer: A Scientometric and Knowledge Network Analysis

Ashutosh Kumar Singh, Shehbaz Husain Naqvi, Tariq Ashraf.

Cited by 0 Articles

Introduction: Lung cancer is the most common and growing kind of cancer. Physicians must include genomes, proteomics, immunohistochemistry, and imaging data into patient therapy recommendations, along with histological, clinical, and demographic data. Deep learning/Machine Learning (ML) and convolutional neural networks have been employed to build medical AI in recent years, which cancan reduce subjectivity and improve the efficiency in treatment. Methods: This investigation makes use of a bibliometric strategy and knowledge mapping, using CiteSpace and R Biblioshiny to conduct a quantitative and visual analysis current picture of development of AI in lung cancer. In this particular research endeavour, evaluations concerning authorship, nations, institutions, reference articles, keywords, and reference journals were carried out. Results: Through the review, total of 1868 articles with contributions of a total of 9974 writers were analysed. There is a 25.3 % increase in the annual rate of scientific production. Frontiers in Oncology journal is determined to be the most globally cited journal with 83 articles and Jiying Wang and Yu wang have the highest h-Indexes, the top authors, are also the most influential ones. The most important keywords are “radiomics”, “convolutional neural network” and “feature selection”. The highest contributing country is held by China, which has an impressive 2103 publications; in second place is USA with 1858 publications. Conclusion: The Pulmonary nodule classification, Radiomics, circulating mirna biomarker, Random Forest vector model are the top clusters and themes with good Q and silhouette value. Thus, we recommend that anyone interested in the field can start with these topics.

Key words: Bibliometric, Scientometric, Lung cancer, Biblioshiny, CiteSpace, Artificial Intelligence, Adenocarcinoma

Full-text options

Share this Article

Online Article Submission
• ejmanager.com

ejPort - eJManager.com
Refer & Earn
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.