ADVERTISEMENT

Home|Journals|Articles by Year|Audio Abstracts
 

Original Article

JJCIT. 2021; 7(1): 25-38


EFFICIENT DEEP FEATURES LEARNING FOR VULNERABILITY DETECTION USING CHARACTER N-GRAM EMBEDDING

Mamdouh Alenezi, Mohammed Zagane, Yasir Javed.



Abstract
Download PDF Post

Deep Learning (DL) techniques were successfully applied to solve challenging problems in the field of Natural Language Processing (NLP). Since source code and natural text share several similarities, it was possible to adapt text classification techniques such as word embedding to propose DL-based Automatic Vulnerabilities Prediction (AVP) approaches. Although the obtained results were interesting, they were not good enough as it was obtained in LNP. In this paper, we propose an improved DL-based AVP approach based on the technique of character n-gram embedding. We evaluate the proposed approach for 4 types of vulnerabilities using a large c/c++ open-source codebase. The results show that our approach can get very excellent performances and outperform the obtained performances by the previous approaches.

Key words: Software Security, Vulnerability Detection, Deep Features Learning, Character N-gram Embedding.







Bibliomed Article Statistics

29
33
26
25
20
24
35
14
19
29
14
4
R
E
A
D
S

9

11

17

17

14

14

16

6

10

7

12

8
D
O
W
N
L
O
A
D
S
010203040506070809101112
2025

Full-text options


Share this Article


Online Article Submission
• ejmanager.com




ejPort - eJManager.com
Author Tools
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.