Home|Journals|Articles by Year|Audio Abstracts

Original Research

Influence of Earth magnetic field on animal nervous system evolution

Kamila Baba-Ahmed, Béchir Béjaoui, Wafa Feki Sahnoun, Noureddine Mechouk, Hafedh Abdelmelek, Zihad Bouslama.


The aim of the present study was to demonstrate the impacts of earth magnetic field (ErMF) on animal nervous system evolution especially electric and histological properties of nerves. We have applied for the first time, as far as we know, a correlation betwen the influence of ErMF and temperature on supraconductor-like behavior in the siatic nerves of four species. Our question point to answer to the a possible link between magnetic change and climate change and to explain in part the possible implication of both parameters in animal nervous system adaptation and evolution. Our results seem to support the existence of a link between ErMF variation and superconductor-like behavior in nerves. The found link does not mean that the ErMF is fully responsible of the histological, electric properties of nerves and climate changes. The data reveal a decrease in nerve resistivity in chameleon and frog, chick and rabbit; showing a superconductor-like behaviour. Analysis of electrical properties demonstrated a clear grade shift at critical temperature (Tc) from poikilotherm (average of ΔT = 11.50) to homeotherm (average of ΔT = 38.00); indicating adaptive nerves changes during evolution confirmed by the increase of Schwann cells number.

Key words: Earth Magnetic Field, Globe temperature, Oceans, Climate Change, CO2 solubility, New York.

Full-text options

Share this Article

Online Article Submission
• ejmanager.com

ejPort - eJManager.com
Review(er)s Central
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under Creative Commons Attribution 4.0 International License (CC BY), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.