Home|Journals|Articles by Year

Directory for Medical Articles
 

Review Article

Med Arch. 2020; 74(2): 134-138


The Nrf2 Activator (DMF) and Covid-19: Is there a Possible Role?

Saif M Hassan, Mahmood J Jawad, Salam W. Ahjel, Ram B. Singh, Jaipaul Singh4, Samir Mohamed Awad, Najah R Hadi.


Abstract

Introduction: COVID-19 is a new viral illness that can affect the lungs and airways with lethal consequences leading to the death of the patients. The ACE2 receptors were widely disturbed among body tissues such as lung, kidney, small intestine, heart, and others in different percent and considered a target for the nCOVID-19 virus. S-protein of the virus was binding to ACE2 receptors caused downregulation of endogenous anti-viral mediators, upregulation of NF-κB pathway, ROS and pro-apoptotic protein. Nrf2 was a transcription factor that’s play a role in generation of anti-oxidant enzymes. Aim: To describe and establish role of Nrf2 activators for treatment COVID-19 positive patients. Methods: We used method of analysis of the published papers with described studies about COVID-19 connected with pharmacological issues and aspects which are included in global fighting against COVID-19 infection, and how using DMF (Nrf2 activator) in clinical trial for nCOVID-19 produce positive effects in patients for reduce lung alveolar cells damage. Results: we are found that Nrf2 activators an important medication that’s have a role in reduce viral pathogenesis via inhibit virus entry through induce SPLI gene expression as well as inhibit TRMPSS2, upregulation of ACE2 that’s make a competition with the virus on binding site, induce gene expression of anti-viral mediators such as RIG-1 and INFs, induce anti-oxidant enzymes, also they have a role in inhibit NF-κB pathway, inhibit both apoptosis proteins and gene expression of TLRs. Conclusion: We are concluded that use DMF (Nrf2 activator) in clinical trial for nCOVID-19 positive patients to reduce lung alveolar cells damage.

Key words: nCOVID-19, Nrf2 activators, ACE2, RIG-1, NF-κB and ROS.






Full-text options


Share this Article



Online Article Submission
• ejmanager.com







eJManager.com
Review(er)s Central
About BiblioMed
License Information
Terms & Conditions
Privacy Policy
Contact Us

The articles in Bibliomed are open access articles licensed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.